How the Venus flytrap got its taste for meat

first_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) Email Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Countrycenter_img The consequences of the alarm, however, are quite different. In noncarnivorous plants, jasmonic acid triggers the synthesis of self-defense toxins and molecules that inhibit hydrolases, enzymes that herbivores secrete to break down the plant’s proteins. As part of their counterattack, plants also produce their own hydrolases, which can destroy chitin and other components of insects or microbes. In the flytrap, in contrast, jasmonic acid triggers a voracious response: Tens of thousands of tiny glands make and secrete hydrolases. The trapped invertebrate is drenched in the same digestive enzymes that another plant might use in smaller quantities to ward off an enemy. “It’s just a change in emphasis,” says Edward Farmer, a plant physiologist at the University of Lausanne in Switzerland.After a few hours, the glands inside the trap turn on another set of genes that helps the plant absorb nutrients from its meal. Experiments showed that many of these genes are the same ones expressed in the roots of other plants. “We looked at each other and said, ‘Yes, it’s a root,’” Hedrich says. “It made immediate sense,” because the flytrap draws its nutrition not from soil, but from its prey.“This is the way evolution works,” says Andrej Pavlovic, a plant physiologist at Palacký University, Olomouc, in the Czech Republic, who compares the flytrap’s innovations to the modification of a bat wing or whale fin from the limb of their terrestrial ancestors. The molecular repurposing that allows carnivorous plants to harvest their nutrients from the air is no less inspiring. Since the dawn of invertebrates, plants have had to defend themselves against hordes of nibblers. On at least a half-dozen occasions, however, plants turned the tables and became predators: the sundew with its sticky tentacles, pitcher plants with their beckoning pools of enzymes, and the flytrap with its swift clamp of death. These plants’ aggressive feeding habits help them survive in poor soil by giving them a new source of nitrogen and other nutrients. Many biologists suspect this predatory behavior evolved when ancestors of today’s carnivorous plants turned mechanisms that normally detect and defend against insect pests into offensive weapons.Now, this hypothesis has gained support from a detailed genetic study of Venus flytraps (Dionaea muscipula) as they snared crickets and began to digest them alive. Led by biophysicist Rainer Hedrich and bioinformaticist Jörg Schultz of the Julius Maximilian University of Würzburg in Germany, a team tracked the genes expressed as the plants sensed and then digested their prey. The research, published online before print in Genome Research, provides the most detailed view so far of the molecular action during prey capture. “This is a great study,” says plant geneticist Victor Albert of the University at Buffalo. “It’s much richer” than previous studies of the process.To catch an invertebrate that has blundered into its snare, the flytrap relies on an ancient alarm system. It starts ringing when the victim jostles trigger hairs. The hairs in turn generate electrical impulses that somehow stimulate glands in the trap to produce jasmonic acid—the same signal that noncarnivorous plants use to initiate defensive action against herbivores. Patterns of gene expression in the two kinds of plants confirm the similarity, Hedrich says.last_img read more